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Abstract— Cleaning public areas like commercial complexes
is challenging due to their sophisticated surroundings and the
vast kinds of real-life dirt. Robots are required to distinguish
dirts and apply corresponding cleaning strategies. In this work,
we proposed an active-cleaning framework by utilizing deep-
learning methods for both solid wastes detection and liquid
stains segmentation. Our system consists of 4 components:
a Perception module integrated with deep-learning models,
a Post-processing module for projection, a Tracking module
for map localization, and a Planning and Control module for
cleaning strategies. Compared with classic approaches, our
vision-based system significantly improves cleaning efficiency.
Besides, we released the largest real-world indoor hybrid
dirt cleaning dataset (HD10K) containing 10K labeled images,
together with a track-level evaluation metric for better cleaning
performance measurement. The proposed deep-learning based
system is verified with extensive experiments on our dataset,
and deployed to Gaussian Robotics’s robots operating globally.
Dataset is available at: https://xxx

I. INTRODUCTION

The demand for floor-cleaning robots has been booming
in recent years, and many camera-based robots have been
developed for better dirt detection. One of the main interests
is active-cleaning, which requires the robot to actively iden-
tify dirt using vision system and correspondingly generate
strategies to clean dirty areas. Compared with traditional
cleaning approaches like S-path or wall-following [24],
active-cleaning speeds up the overall procedure significantly.

Existing systems designed for active-cleaning like office
cleaning robots [8] or outdoor garbage collecting robots [19]
can be categorized into 3 stages: Detection, Localization,
and Control. For detection, early approaches [5], [6], [8]
utilized depth information with spectral residual filtering or
GMM [12] for dirt & background separation. In recent years,
more and more studies [7], [11], [16], [19] have started to
employ deep-learning methods as their detection backbones,
yielding more accurate detection results. For localization,
a homography matrix is commonly applied to project the
identified dirt from the image plane to the world frame.
Followed by tracking and corresponding control strategies,
the robot is capable of active-cleaning.

In the framework mentioned above, the detection module
plays a vital role. However, most solutions only target solid
wastes while the remaining few solutions [9], [29] for hybrid
dirt solely apply object detection. Liquid stains usually
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Fig. 1: Visualization of inferencing results from our active-
cleaning system in production. Solid wastes(green box) and
liquid stains(red contour) are detected via YOLOv5 [14] and
DDRNet [28] backbones respectively.

occupy a much smaller area than the bounding box resulting
a waste of cleaning effort after projection. Moreover, training
a dirt detection model is challenging due to insufficient
data in the field. Most of the work [2], [7] heavily use
synthesized and augmented data. These generated data ignore
spatial relationships between objects, which leads to poor
performance for items at a far distance or in small size.

To improve cleaning efficiency, we build our system by
framing the hybrid dirt cleaning task into detection and
segmentation for solid wastes and liquid stains, respectively.
To our best knowledge, we are the first to publish a deep-
learning-based active-cleaning system with proven perfor-
mance, and it has been deployed onto our robots worldwide.
In addition, to alleviate the scarcity of data, we collected and
released the largest hybrid dirt dataset in the field, containing
10K images of solid wastes and liquid stains obtained from
3 cities. Aside from classic image-level precision and recall,
we proposed a track-level metric for a more comprehensive
active-cleaning performance evaluation on our dataset. To
sum up, our contributions can be concluded as three-folds:

• We are the first to propose an indoor active-cleaning
framework powered by deep-learning methods, which
effectively detect and segment solid wastes and liquid
stains.

• We released a Hybrid-Dirt-10K (HD10K) dataset with
10K images covering 3 real-world scenes. It is also the
largest dataset so far in the field for floor-cleaning tasks.

• Apart from image-level evaluation, we present a track-
level evaluation metric for solid wastes and liquid stains
recognition.



Fig. 2: Architecture for our active-cleaning framework. YOLOv5 [14] and DDRNet [28] are used for solid wastes detection
and liquid stains segmentation, respectively. Inference results are further fed into post-processing module for image-world
coordinate transformation and dirt size estimation. A tracking algorithm is developed for object re-identification and together
with our Planning & Control(PNC) module, our robot is able to perform hybrid dirt active-cleaning in real world environment.

II. RELATED WORK

Early solutions firstly try to separate dirt from the back-
ground. The detected dirt are then projected from im-
age plane to world frame using perspective transformation.
Lastly, by applying tracking and different control strategies,
dirt are cleaned and active-cleaning is achieved. For detec-
tion, 2D saliency-based methods [5], [8] using canny edge
detector [10] and GMM [12] are adopted to filter out targets
in the image. After dirt are identified, a homography matrix
is applied for projection and dirt’s positions are estimated in
the world frame. Followed by tracking algorithms like Adap-
tive Color Matching [22] or Kalman filters [15], detected
objects can be traced and corresponding control options will
be applied. Though these approaches usually have a high
rate of false-positives resulting in frequent human-machine
interaction, the main advantage is learning-free, which can
be applied directly to different scenes with various floor
patterns.

Thanks to the success of Convolutional Neural Networks
(CNNs), various robots were developed and equipped with
object detection models. In [29], Yin et al. developed their
system using a VGG-alike [23] network as the detection
module for table liquid stains detection and classification.
After dirt are spotted, perspective transformation is applied
for projecting the point of bounding boxes in the image
plane to 3D points in the world frame. Then a grouping
algorithm is applied for a more efficient cleaning. Based on
the spatial distribution of the stains, corresponding cleaning
strategies will be executed based on the grouping results.
In addition, Bai et. al. [2] proposed their active-cleaning
system by equipping their robot with SegNet [1] for coarse
ground segmentation then adopt ResNet [13] for solid wastes
classification. Instead of using projection, they keep tracking
the bounding boxes in the image plane to estimate their
location in the real world. By using deep-learning methods,
system accuracy is improved and with more data used for
training, better generalization is achieved.

III. SYSTEM ARCHITECTURE
The overall architecture of the proposed framework is

illustrated in Fig. 2. We divide our system into 4 stages:
Perception module, Post-processing, Tracking, and Planning
& Control (PNC). The perception module receives camera
input and generate inference results. In order to locate liquid
stains precisely, we adopt a segmentation network instead
of object detection. Followed by a post-processing module,
we project the detected dirt from image plane to the ground
plane. Then the tracking module tracks the projected dirt in
each frame to continuously locate and update target’s posi-
tion. Lastly, a PNC module is applied for robot navigation
and cleaning strategy planning. A cleaning task is marked as
done once the defined working area is covered via robot’s
camera FOV.

IV. SYSTEM MODULES
A. Detection and Segmentation

1) Modified YOLOv5 for Detection: We employ YOLOv5
[14] for solid wastes detection. Due to the installation angle
of the camera, as shown in Fig. 7, most of the solid wastes
at distant, e.g., > 2m, are squeezed into a few pixels in the
image, which are prone to false positives (FP) and false
negatives (FN). FPs will trigger our robot to move to a
non-existing target while FNs will make our robot short-
sighted. In YOLO, detecting small objects relies on shallow
features extracted by F1 − F3 while the detection of big
objects are based on semantic features in F4−5. However,
as shown in Fig.3, we noticed that layer B3 also contains
semantic features from B4 and B5, which might affect the
performance of P3. Besides, we further visualized feature
maps of B3 by plotting the weights of convolution layers
and found out only some of the features passed to layer P3
are useful, as illustrated in Fig.4. Thus we adopted a channel-
wise spatial attention block [27] to guide P3 and integrated
it at the bottom of PAN [20] structure to guide P3 focus
more on important features rather than treat them equally.
The modified network achieved better results compared with
original YOLOv5.



Fig. 3: Illustration of modified YOLOv5 [14] for solid wastes
detection in our proposed system. Spatial and channel-wise
attention are applied at the bottom of the PAN [20] module
for better small object detection.

Fig. 4: Feature maps passed into P3 block for small object
detection. Empty feature maps are highlighted by red boxes.

2) DDRNet for Segmentation: As shown in Fig.5, DDR-
Net is used for liquid stains segmentation due to its superior
performance on both accuracy and inference speed. Seg-
mentation is preferred instead of object detection because
liquid stain is usually in irregular shape and size, i.e., the
actual stain can be a small portion of its outer bounding
box. Such effect will be amplified after projecting onto the
ground plane, and results in significant waste of cleaning
effort.

Similar to [2], [7], we applied data augmentation at train-
ing. For detection, we copy-pasted solid wastes to random
positions with random flipping and rotation, and we mixed
liquid stains images as negative samples. For segmentation,
solid wastes images are also used as negative samples for
better generalization.

B. Post-processing

Detected objects should be transformed from the image
plane to the world frame for robot planning and control,
thus a homography matrix needs to be applied for perspective
transformation. Unlike [8], where an estimated homography
matrix is applied, we calibrated our camera and obtained a
more precise matrix. The calibration setup is shown in Fig.6
where aruco QR codes are pasted on the box perpendicular to
the ground. Through the camera, we can get the coordinates
of intersections between the QR code, ground, and the
box, denoted as C1−4. Similarly, we can also obtain their
coordinates through lidar, denoted as L1−4. Finally, by using
the PNP algorithm [18], we can calculate the homography
matrix accurately using C1−4 and L1−4. Mathematically,
given the inference results in the image coordinate Ximage
and a homography matrix Hlidar

image from plane image to lidar,
the projected coordinate can be formulated as:

Xlidar =Hlidar
imageXimage (1)

and the position in the world coordinate can be further
calculated based on the dynamics of the robot.

Fig. 5: DDRNet [28] for liquid stains segmentation in our
proposed framework.

Fig. 6: Camera calibration. Calibration boxes (yellow) with
QR code (red) are used for precise calculation of homogr-
pahy matrix from image plane to world frame. Distances
shown in graph is not in scale.

C. Tracking

We denote Ot as the object detected by our system at
current time stamp t. Once created, it will be assigned a
lifetime T and the value of Ot is a tuple consisting center
position in cx,cy, id in ID, and its occurance in consequtive
k frames in N. For each object detected by our system, it
will be initialized as OT

t = (cx,cy,0,0). Then by comparing
and thresholding the Euclidean distance of the center point
(cx,cy) of Ot against all observed objects in a historical
list L, we can assign Ot to its associated ID and update
its occurrence N accordingly, i.e. OT

t = (cx,cy, ID,N). Then
OT

t is appended to the list L and we move to the next time
stamp t + 1. The object will be marked as Confirmed if its
occurance N is larger than a pre-defined threshold δ , and
will be deleted from L once it meets the lifetime. Then we
pass the confirmed object OT

t to the next module for more
control strategies planning.

D. Planning and Control

Given a task area on the map, the robot will mark the
region that has been covered by the camera’s FOV along its
movement. For region that has not been explored or there is
no target detected, the robot will select and navigate itself to
the closest point of current position. During its FOV-cruising,
if dirt is detected by perception module and confirmed
by the tracking module, its size will be calculated based
on its projected shape and our robot will apply different
cleaning strategies accordingly. Small dirt will be cleaned
by calculating their centroids and our robot will directly run
over to clean it. Dirt larger than the robot’s brush size will be
cleaned in S-path. Aforementioned process repeats until the
whole target area is discovered by the FOV of our robot’s
camera. Since camera’s FOV is much larger than the size
of our robot, compared with traditional S-path cleaning, the



Fig. 7: Robot specifications. A RGB camera is installed in
front of the robot at height of 78.5cm with an angle of 44◦

looking downwards.

Fig. 8: Examples of different types of solid wastes and liquid
stains in our dataset.

adopted strategy can identify and mark much more area per
unit time, thus greatly boost the cleaning efficiency.

V. DATASET

In this section, we describe details on data collection and
annotation, and evaluation protocols of our dataset.

A. Collection & Annotation.

We use our robot’s front RGB camera to record the data.
The camera has 90◦ of horizontal FOV and is located at
78.5cm in height with 44◦ offset downwards, as shown in
Fig.7. Common dirt in shopping malls such as flyers/ tickets,
and coffee/tea stains are targeted as solid wastes and liquid
stains correspondingly, as shown in Fig.8. During collection,
dirt are randomly placed on the floor mimicking the real-life
scenes and the robot was manually pushed using random rou-
tines. To ensure the variety of our data, 3 cities are selected,
resulting in 3 different floor patterns (Fig.9). The collected
data are in the form of video sequences in 10FPS; key-frames
are extracted for annotation by thresholding frame similarity
at 2Hz. Bounding boxes and segmentation masks are applied
accordingly for solid wastes and liquid stains. Only key-
frames are labeled for training data while the entire sequence
is labeled for testing data.

B. Dataset statistics.

We build our dataset based on scenes, as shown in Table I.
For training, 2 scenes are included each with 2000 extracted
key-frames, while 2 video sequences with 1000 frames each
are provided for testing. Besides, camera parameters are also
included as they will be used in our proposed evaluation
methods in Sec. V-C. For training data, solid wastes and
liquid stains are separately collected and labeled, while for
testing data, all dirt are collected and annotated together. In
addition, test video 0 shares the same scene with scene 1,
while test video 1 is an independent clip from all other 2
scenes in the training set.

Fig. 9: Examples of floor patterns and dirts in our HD10K
Dataset. Unlike most synthesized data, our images comprise
a good mixture of dirt in various size, and their perspective
information is well preserved.

Shown in Table II, our dataset is not only the largest
in the field compared with other benchmark datasets [12],
[17], [21], [26], but also covers the most comprehensive
scenarios with both segmentation masks and bounding boxes
presented. In total, our dataset consists of 10,000 images with
10,118 bounding boxes and 6,694 polygons for solid wastes
and liquid stains, respectively.

TABLE I: Number of images and labeled bboxes / polygons
under each scene in HD10K Dataset.

Types Training Testing
Solid wastes Scene 0 Scene 1 Scene 1 Scene 2

Image 2,000 2,000 1,000 1,000
Annotations 2,625 3,691 1,883 1,919

Liquid stains Scene 0 Scene 1 Scene 1 Scene 2
Image 2,000 2,000 1,000 1,000

Annotations 854 2,996 1,990 854
Mixed ✗ ✗ ✓ ✓

TABLE II: Comparison between HD10K Dataset and other
benchmark datasets in the field.

HD10K
Dataset

ACIN
[12]

MJU
[26]

Ext.
TACO [21]

UAVVaste
[17]

Size 10,000 969 2,475 4,562 772
Scenes indoor indoor indoor outdoor outdoor

Resolution 480x640 480x640 480x640 various sizes various sizes
Solid wastes ✓ ✓ ✓ ✓ ✓
Liquid stains ✓ ✓ ✗ ✗ ✗
Seg. masks 6,694 0 2,475 4,784 0

Bounding boxes 10,118 2,286 0 4,784 3,718

C. Sequence-based Evaluation Metrics

Current metrics like Precision, Recall and Mean IOU for
object detection and semantic segmentation only evaluate
each individual module, they do not reflect the overall per-
formance of an end-to-end system. To this end, we propose
a sequence-based end-to-end metric that jointly evaluates
these modules and focuses on instance-level recognition
performance. Specifically, we propose an MOT-alike metric
to evaluate track-level precision and recall for solid wastes
and liquid stains respectively. Given a set of bounding boxes
and segmentation masks, we first generate a track ID for
each solid / liquid stains, the track-level precision and recall
can be computed based on the tracks of ground truth and
predictions. To aid practical analysis, we also break down
our metric based on the physical distance to the robot of
each solid / liquid stains. We detail the metric calculation
process for a single image sequence s:



1) Generating track IDs from ground truth annotations
and model predictions: given the annotated bounding boxes
and segmentation masks for all frames in the sequence, we
use an offline process to generate the ground truth tracks
to improve the quality of the track IDs. We first extract
the liquid stains from the masks with cv2.findContours [25],
the extracted polygons are then converted to bounding boxes
by finding their minimum bounding rectangles. We run the
SORT [3] algorithm on image coordinates for solid wastes
and liquid stains respectively to generate the initial tracks
Ts

SORT and Tl
SORT.

Assuming the locations of objects do not change over time,
we perform hierarchical clustering on Ts

SORT and Tl
SORT

respectively, where the distance d between a track t1 and
another track t2 is defined as the mean Euclidean distance
of all pairwise distances of the bounding box centres between
the two tracks, formally:

d =
1

|P1
2|

∑
box1∈t1

∑
box2∈t2

∑ |c1− c2| (2)

where P1
2 denotes all possible bounding box pairs between

t1 and t2, c1, c2 are the box centres of box1, box2 respec-
tively.

We set the distance threshold for hierarchical clustering to
0.1 metres and denote the final ground truth tracks as Ts

gt
and Tl

gt for solid wastes and liquid stains respectively. We
perform the same process on the predicted bounding boxes
and segmentation masks to generate the predicted tracks
Ts

pred and Tl
pred.

2) Track-level precision and recall: to match the predic-
tions with ground truths, we first perform linear assignment
between the ground truth boxes and predicted boxes and
remove the matches whose IoU is less than 0.5. We keep
track of the match status of each box in all the tracks in
Tgt and Tpred. A successful match is defined as more than
half of the ground truth boxes are matched with predictions.
A predicted track is marked as a true positive (TP) for a
successful match. We perform this step for solid wastes and
liquid tracks respectively. The track level precision and recall
can then be computed as:

ps = T Ps/|Ts
pred|,r

s = Ms/|Ts
gt| (3)

pl = T Pl/|Tl
pred|,rl = Ml/|Tl

gt| (4)

where T Ps and T Pl denote the number of true positive
predicted solid wastes and liquid tracks, |Ts

pred| and |Tl
pred|

denote the predicted tracks for solid wastes and liquid stains,
Ms and Ml denote the number of matched ground truth solid
/ liquid tracks respectively.

3) Performance break-down based on physical distance
to the robot: bad recognition results at different distances
from the robot will have different impacts on the final system
performance, for instance, if the pipeline fails to recognize
liquid stains within 2 metres from the robot, the robot might
run over of it instead of cleaning it, resulting in undesired
consequences. Therefore, we break down our metrics into

distance intervals for better performance evaluation. Specif-
ically, for each ground truth object, we use homography
matrix to project the lower centre of the bounding box
to baselink to estimate its physical distance to the robot,
then for each distance interval, we remove all out-of-bound
objects before computing the metrics. We report the track-
level recalls and precisions for distance intervals [0,2), [2,4)
and [4,∞), all in metres.

The final metrics for distance interval [d1,d2) are obtained
by averaging the metrics of all sequences S:

Ps
d1,d2 =

1
|S| ∑

s∈S
ps

d1,d2,R
s
d1,d2 =

1
|S| ∑

s∈S
rs

d1,d2 (5)

Pl
d1,d2 =

1
|S| ∑

s∈S
pl

d1,d2,R
l
d1,d2 =

1
|S| ∑

s∈S
rl

d1,d2 (6)

VI. EXPERIMENTS

In this section, we briefly introduce our implementation
details and report our evaluation results.

A. Implementation Details

We train the networks using our labeled HD10K Dataset.
Data are augmented as mentioned in Sec.V-B. During train-
ing, images are firstly resized to 512 × 512, then mosaic
augmentation [4] and random horizontal flipping are adopted.
We train the network using a batch size of 16 with 100
epochs on a single RTX 2080Ti. We obtain our inferencing
results using Intel OpenVINO platform and implement pro-
jection, tracking, and PNC algorithms in Robot Operating
System (ROS).

B. Evaluation Results

Model-level Evaluation. As standard detection and seg-
mentation evaluation practices, we report mAP (mean Av-
erage Precision) and mIOU (mean Intersection over Union)
respectively on our HD10K dataset, as shown in Table III.
For detection evaluation, we further compute precision &
recall by setting a confidence threshold that achieves best
F1 score. For segmentation, detection-like precision & recall
can be evaluated similarly, by assigning confidence score as
the mean pixel-wise confidence in the predicted stain mask,
and computing mask-to-mask overlap with IoU.

Additionally, we present our ablation study in Table III,
where Raw, Blend, Aug. represents training YOLOv5 on
original dataset, dataset mixed with liquid stains, and data
augmentation on solid wastes; while Attn. refers to modified
yolo model in Sec. IV-A.1.

TABLE III: Evaluation results of YOLOv5 and DDRNet
backbones on HD10K Dataset.

HD10K Dataset Raw Attn. Blend Aug. P R mAP50 mAP95 mIOU

YOLOv5s

✓ 0.606 0.617 0.538 0.420 -
✓ 0.622 0.632 0.543 0.442 -
✓ ✓ 0.643 0.636 0.561 0.455 -
✓ ✓ ✓ 0.691 0.690 0.609 0.480 -

DDRNet ✓ 0.701 0.693 - - 0.847
✓ 0.726 0.718 - - 0.858



Track-level Evaluation The distance information can be
easily obtained by using a homography matrix stored on
our machine. Table IV shows the precision and recall of
our system under different distance intervals. As mentioned
before, objects at distant are small in the image, resulting in
significant performance drop.

TABLE IV: Cleaning performance evaluation for both solid
wastes and liquid stains against the distance intervals.

Distance Solid Wastes Liquid Stains
Precision Recall Precision Recall

0-2m 0.746 0.724 0.739 0.696
2-4m 0.607 0.524 0.701 0.735
4-6m 0.301 0.248 0.597 0.645

System-level Evaluation We further evaluate the overall
cleaning efficiency in real production by comparing the
proposed system against traditional S-path cleaning with the
same speed and control configurations. Our proposed system
boosts hourly cleaning efficiency from 500m2 to 1800m2.

VII. CONCLUSIONS

We proposed an high performance active-cleaning frame-
work for indoor cleaning tasks. It is a hybrid task system
utilizing deep-learning models for solid wastes detection
and liquid stains segmentation. In addition, we released our
HD10K dataset, which is the largest dataset in the field so far.
Furthermore, we proposed comprehensive evaluation metrics
for better cleaning efficiency measurement. Our proposed
system can accurately detect hybrid dirt and effectively boost
cleaning efficiency.
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